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We study the spin-dependent electronic excitations in alkali-metal nanoparticles. Using numerical and ana-
lytical approaches, we focus on the resonances in the response to spin-dependent dipole fields. In the spin-
dipole absorption spectrum for closed-shell systems, we investigate in detail the lowest-energy excitation, the
“surface paramagnon” predicted by Serra et al. �Phys. Rev. A 47, R1601 �1993��. We estimate its frequency
from simple assumptions for the dynamical magnetization density. In addition, we numerically determine the
dynamical magnetization density for all low-energy spin-dipole modes in the spectrum. Those many-body
excitations can be traced back to particle-hole excitations of the noninteracting system. In open-shell systems,
the spin-dipole response to an electrical dipole field is found to increase proportionally with the ground-state
spin polarization.
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I. INTRODUCTION

The optical absorption of small metal particles is domi-
nated by the surface plasmon resonance.1–4 In this collective
excitation, the center of mass of the electrons moves back
and forth with respect to the positive background leading to
an oscillating charge dipole. Pump-probe experiments using
femtosecond laser pulses have been widely used to study the
relaxation of these excitations.5,6 Within the surface plasmon
excitation all the electrons oscillate in phase, irrespective of
their spin. Thus, its study only yields information on the
charge dynamics. In order to address the spin dynamics of
nano-objects, time-resolved magneto-optical Kerr effect
measurements have been performed recently, yielding the
full trajectory of the magnetization in real space for optically
excited superparamagnetic nanoparticles.7

Substantial interest in the theoretical description of spin
dynamics in nano-objects was aroused by the work of Serra
et al.,8 who found that a strong peak in the spin-dipole ab-
sorption spectrum of alkaline nanoparticles exhausts a large
fraction of the energy-weighted sum rule and drew the con-
clusion that this peak corresponds to a collective spin mode.
In this excitation named “surface paramagnon,” the spin de-
gree of freedom appears in a crucial manner. While the sur-
face plasmon can be excited by a dipole electric field, the
surface paramagnon results when an excitation acts differ-
ently for spin-up and spin-down electrons. Such a field can
be realized experimentally through the magnetic field com-
ponent of electromagnetic waves having a wavelength con-
siderably longer than the size of the system.9

For the case of spherically symmetric systems with zero
total spin, in the spin-dipole mode the center of mass of the
electron system does not move. Therefore, such an excitation
does not couple to an electric field in closed-shell systems.
Since transitions induced by electric dipole fields are the
dominant mechanism, the surface paramagnon is difficult to
observe in the optical absorption spectrum of such nanopar-
ticles. However, for nanoparticles with no spherical symme-
try and/or open-shell electronic systems, the spin dipole
couples to electric dipole fields.10–12 For relatively small sys-

tems, it has been concluded from calculations of the time
evolution of strong excitations that the coupling between the
charge and the spin modes is not crucially modified when the
excitation strength is increased into the nonlinear régime.10

In systems that lack spherical symmetry scissor modes exist,
which can also be coupled to the spin modes.13

The difficulty to detect the spin-dipole mode in rotation-
ally invariant nano-objects becomes less restrictive when one
studies semiconductor quantum dots instead of metallic
nanoparticles. For the typical sizes and electronic densities of
quantum dots the energies of the charge and spin-dipole ex-
citations are on the order of a few meV. Therefore Raman
scattering of visible light can be used �with selection rules
depending on the polarization geometry14� to detect and
study both kinds of excitations.15 Finally, the strong elec-
tronic confinement of disk-shaped quantum dots in semicon-
ductor heterostructures results in very sharp resonances for
dipolar excitations. The enhanced damping of the lowest
spin-dipole mode in the presence of a weak magnetic field
that splits the single-particle excitations has been taken as an
indication of the collective character of the lowest spin-
dipole mode.15

The availability of experimental data has motivated theo-
retical work on the charge and spin density excitations in
semiconductor few-electron quantum dots �see, for example,
Ref. 16�. In particular, the induced magnetization density has
been studied9 and a correspondence between the spin-dipole
modes and single-particle excitations has been observed
numerically.17 The small deviation of the spin density reso-
nance energies from single-particle excitation energies has
been explained by the absence of long-range Coulomb inter-
action terms in the energy of the spin modes. In addition, the
excitation energies have been studied using the Quantum
Monte Carlo technique18 and within a semiclassical approach
for the time-dependent charge and spin density oscillations.19

In this work, we use analytical �mean-field� and numerical
time-dependent local spin-density approximation �TDLSDA�
approaches to study in detail the physics of the spin-dipole
modes in alkali-metal particles. We address the important
questions related to the specificity of the lowest-frequency
resonance as compared with the other excitations by identi-
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fying the modes with the corresponding dynamical magneti-
zation densities.

We obtain the size scaling of the lowest resonance fre-
quency and relate it with spill-out effects. In addition, we
study the evolution of the spin modes with the interaction
and thereby provide arguments in the discussion over the
collective versus single-particle nature of the surface para-
magnon. In the case of open-shell systems we analyze the
nature of the different spin-dipole excitations and the rela-
tionship with the charge modes. While our numerical results
are worked out for the case of alkaline metal nanoparticles,
most of our general conclusions hold for a broad class of
nanosystems, including semiconductor quantum dots.

The paper is organized as follows. In Sec. II, we describe
the model for the electron dynamics in metal nanoparticles
and the numerical method we employ. We also present the
computed spin-dipole absorption spectrum and the corre-
sponding dynamical magnetization density for a typical ex-
ample of a closed-shell system. In Sec. III, we use a phenom-
enological approach to describe the energetically lowest
spin-dipole excitation and derive results for its frequency
based on plausible assumptions on the dynamical magnetiza-
tion density. We compare the numerically obtained frequen-
cies with the phenomenological ones resulting from increas-
ingly accurate descriptions of the electronic dynamics. In
Sec. IV, we present numerical results for the full absorption
cross section in the frequency regime below the surface plas-
mon frequency. We follow the evolution of the absorption
spectrum with the strength of electron-electron interactions
and find one-to-one correspondence of the spin-dipole modes
with the particle-hole excitations. In Sec. V, we study open-
shell clusters and discuss the possibility to observe the spin-
dipole modes in the electric dipole absorption spectrum. We
provide our conclusions in Sec. VI. In the Appendixes we
present the details of our LSDA parametrization and the cal-
culations for the case of a nonuniform ground-state electron
density.

II. NUMERICAL APPROACH TO SPIN-DIPOLE
EXCITATIONS

In our study of the electronic excitations of nanoparticles,
we restrict ourselves to the electronic degrees of freedom and
describe the confining effect of the ionic background by a
spherical jellium model with sharp boundaries. Such a sim-
plification can be justified for not too small metal particles.
Furthermore, we do not consider thermal effects and there-
fore choose to work at zero temperature.

We start by introducing the formalism underlying the nu-
merical approach to the absorption cross section correspond-
ing to spin-dependent excitations of our model nanoparticles.
We follow the formulation of the TDLSDA �Ref. 20� as it is
presented in Ref. 16. In this framework the electronic system
is described in atomic units ��=m=e=4��0=1� using the
Kohn-Sham equations

i
�

�t
�k

��r,t� = �−
1

2
�2 + Veff

� �r,t���k
��r,t� , �1�

where �k
� is the kth Kohn-Sham wave function with the

quantum number �= �↑ ,↓� describing spin projection onto

the ẑ axis. These wave functions allow us to define the spin-
dependent electron densities

n��r,t� = 	
k occ


�k
��r,t�
2, �2�

where the sum runs over the single-particle-like Kohn Sham
levels k that contribute to the many-body density. The elec-
tron density, magnetization density, and spin polarization are
obtained from n�, respectively, as

n = n↑ + n↓, �3a�

m = n↑ − n↓, �3b�

� = m/n . �3c�

The effective potential in the Kohn-Sham equations can
be written as

Veff
� �r,t� = Vc�r� + VH�r,t� + Vxc

� �r,t� + Vex
� �r,t� , �4�

where Vc represents the confinement due to the jellium back-
ground, VH is the Hartree potential, Vxc

� is the exchange-
correlation potential and Vex

� stands for the external perturba-
tion. The local character of the approximation is reflected by
the choice

Vxc
� �r,t� =� �

�n� �n�xc�n↑,n↓���n↑=n↑�r,t�

n↓=n↓�r,t�

, �5�

where �xc�n↑ ,n↓� stands for the exchange-correlation energy
density for which we use the parametrization of Perdew and
Zunger21 reproduced in Appendix A.

Within linear response theory we write the density
changes induced by the external perturbation as

�n��r,	� = 	
��
� dr�
����r,r�,	�Vex

���r�,	� , �6�

where Vex
� �r ,	� is the Fourier transform of the time-

dependent external potential, and the response functions 
���

obey the Dyson equation


����r,r�,	�
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0
����r,r�,	� + �c 	

�1�2

� � dr1dr2
0
��1�r,r1,	�

� 1


r1 − r2

+ Kxc

�1�2�r1,r2��
�2���r2,r�,	� , �7�

where we introduced the parameter �c=1, which will later
allow us to modulate artificially the importance of the
electron-electron interactions in model calculations. The ker-
nel of Eq. �7� is given by

Kxc
�1�2�r1,r2� =� �

�n�2
�Vxc

�1�n↑,n↓���n↑=n↑�r1�

n↓=n↓�r2�

��r1 − r2� . �8�

The noninteracting response function is diagonal in the spin
indices and given by the density-density correlator
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which can be expressed in terms of the retarded Green’s
functions.8,16 We have chosen the imaginary part in the de-
nominator that ensures the convergence as �=8 meV
�=2.94�10−4 in atomic units�. This value corresponds to the
coupling to a phonon heat bath at a temperature on the order
of 100 K, which is realistic for typical experiments. The
width of structures in the spectrum is limited by �, but the
resonance frequencies are not affected by variations of this
parameter.

Defining the spin-independent part of the external pertur-
bation Vex,n= �Vex

↑ +Vex
↓ � /2 and its spin-dependent counterpart

Vex,m= �Vex
↑ −Vex

↓ � /2, the response of the charge and magneti-
zation densities n and m can be expressed in matrix form as

� �n�r,	�
�m�r,	�

� =� dr��
nn�r,r�,	� 
nm�r,r�,	�

mn�r,r�,	� 
mm�r,r�,	�

�
��Vex,n�r�,	�

Vex,m�r�,	�
� , �10�

where the cross correlations of the charge and spin channels
are given by


nn/nm = 
↑↑ � 
↑↓ + 
↓↑ � 
↓↓, �11a�


mn/mm = 
↑↑ � 
↑↓ − 
↓↑ � 
↓↓. �11b�

Electromagnetic radiation with wavelength much larger
than the size of the nanoparticles induces dipolar perturba-
tions. Considering monochromatic light with wave vector k
=kx̂, linear polarization along ŷ, and therefore magnetic field
along the ẑ direction, the dipole excitation potentials for
charge and spin can be written as

Vex,n�r,t� = Fny , �12a�

Vex,m�r,t� = Fmx , �12b�

with the excitation strengths Fn=−Emax sin�	t� and Fm
=g�BEmaxk cos�	t�, the Bohr magneton �B, and the gyro-
magnetic factor g �g�B=1 in atomic units�. These dipolar
perturbations lead to dipolar charge and spin-density excita-
tions, and the corresponding polarizabilities are given by

�ab�	� =� � drdr�rr� cos � cos ��
ab�r,r�,	� , �13�

with ab= �nn,nm,mn,mm�. For the simplicity of notations,
the polar coordinates �r ,� ,�� are here and henceforth chosen
to have the ẑ axis along the variation in the excitation field.
This conventional choice allows us to treat the charge and
spin excitations within the same description, but it is not
consistent with the example of electromagnetic radiation pre-
sented above.

The experimentally relevant quantities are the dipole ab-
sorption cross sections

Sab�	� =
4�	

c
Im��ab�	�� . �14�

For spherically symmetric nanoparticles � and S are diagonal
in channel indices a and b. In this case we will work with
Sn=Snn and Sm=Smm. The spin-dipole absorption spectrum
Sm�	� for the closed-shell system Na34 �Ref. 22� is shown in
the left panel of Fig. 1. Four peaks are observed in the low-
energy range below 0.6	M, with the Mie frequency 	M
=3.4 eV which is the classical frequency of the surface plas-
mon excitation.1 The peak at the lowest frequency, labeled
�1� in the figure, displays the strongest absorption cross-
section and corresponds to the surface paramagnon described
by Serra et al.8 In Sec. III we derive analytical expressions
that accurately describe its frequency and its dependence on
the size of the nanoparticle.

The radial part of the magnetization density at resonance
is shown in Fig. 1 �right� for the four peaks appearing in the
absorption spectrum. The magnetization profile for the low-
est frequency peak �1� clearly differs from the profiles cor-
responding to the higher frequency peaks: it involves consid-
erably stronger magnetization densities than the other peaks
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FIG. 1. Left: spin-dipole absorption spectrum for a Na34 nanoparticle. The frequencies of the horizontal axis are normalized to the Mie
frequency 	M=3.4 eV �=0.125 in atomic units�. Right: radial part of the magnetization density for each of the resonances identified in the
left panel, as a function of the radial coordinate �scaled with the radius a of the particle�. The magnetization profile is scaled with the
excitation strength, the mean density, and the radial coordinate.
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and, most importantly, it displays no significant nodes �ex-
cept at the center of the nanoparticle�, whereas the other
peaks are associated to magnetization profiles with richer
node structures inside the nanoparticle. For larger systems,
even more peaks appear, and the corresponding magnetiza-
tion profiles show more complicated structures with several
nodes. However, the particularly simple structure of the
lowest-frequency peak, and its stronger amplitude, persist
and thereby point to its special character.

III. PHENOMENOLOGICAL APPROACH TO
SPIN-DIPOLE EXCITATIONS

The physics of the spin-dipole excitations obtained in the
previous section can be understood through phenomenologi-
cal models. In particular, we present an estimation of the
lowest resonant frequency and compare it with results from
TDLSDA calculations.

We consider a spherically symmetric nanoparticle with
ground-state equilibrium densities n0

↑�r�=n0
↓�r� and a pertur-

bation in the spin channel such that �n↑�r�=−�n↓�r�. The
displacements of the center of mass of the two spin popula-
tions along the ẑ direction are given by

Z↑ = − Z↓ =
1

N↑� drz�n↑�r� , �15�

where N↑=N /2 is the number of spin-up electrons and N the
total number of electrons. Since there is no net charge dis-
placement, the Hartree term EH of Eq. �A5� remains un-
changed under the perturbation. The changes in the other
contributions to the total energy can be calculated from
�n↑�r�.

A. Uniform ground-state density

The ground-state equilibrium electron density in a spheri-
cal jellium model of radius a with sharp boundaries can be
approximated by a uniform distribution

n↑�r� = n↓�r� =
n̄

2
��a − r� �16�

inside the sphere, where n̄=3N /4�a3 and � denotes the
Heaviside function. Assuming that the perturbation is a dipo-
lar field, the simplest approximation to describe the low-
energy spin excitations of the system is to postulate the tilts

�n↑�r� = − �n↓�r� =
z

�

n̄

2
��a − r� �17�

of the spin densities. The characteristic length � describes the
magnitude of the excitation. Working in linear response, we
restrict ourselves to weak excitations with ��a and consider
the change in total energy induced by the above density ex-
citations using the energy functionals described in Appendix
A.

The simple form assumed for the spin densities allows us
to neglect the change of EK,G. To the lowest order in the
perturbation the other components of the energy are modified
as

�EK,TF =
2�4/3

31/3 � dr
��n↑�2

n̄1/3 =
5

4
�3�2

2
�1/3

N5/3Z↑2

a4 ,

�18a�

�EX = −
2

�9��1/3� dr
��n↑�2

n̄2/3 = −
5

6
� 3

2�
�2/3

N4/3Z↑2

a3 ,

�18b�

�EC =
2

�9��1/3� drc�r̄s�
��n↑�2

n̄2/3 =
5

6
� 3

2�
�2/3

c�r̄s�N4/3Z↑2

a3 .

�18c�

We have defined

c�rs� =
1

3
� 24/3

21/3 − 1
��4�

3
�2/3

rs��P�rs� − �U�rs�� �19�

with �P,U given in Appendix A and r̄s= �4�n̄ /3�−1/3. The en-
ergy increase due to the spin density displacements leads to a
restoring force F=−�E /�Z↑ and an out-of-phase oscillation
of the two spin subsystems with a frequency

	S =� 2�E

NZ↑2

=
	M

N1/3� 3

2�
�1/35

3
��3�2

2
�2/3 1

r̄s

− 1 + c�r̄s���1/2

.

�20�

We have expressed the result in terms of the classical Mie
frequency,1 which can be written as 	M=�N /a3= �r̄s�−3/2.

As compared to the spin dipole, the surface plasmon ex-
citation is of quite different nature since it results from the
oscillation of the total charge. The frequency 	M can be ob-
tained following similar lines as those presented above but
restricting the restoring force to the Hartree contribution. The
different nature of the energies involved in each mode results
in a higher frequency for the surface plasmon �in the visible
part of the spectrum for the case of metal nanoparticles� than
for the spin dipole �in the infrared range�. Moreover, 	M is
independent of the size of the particle, while 	S decreases
with the number of electrons as N−1/3. This power-law scal-
ing has already been obtained in Ref. 23 within sum rule and
hydrodynamic approaches. It makes the observation of the
surface paramagnon in large particles more difficult.

In Fig. 2 we compare the values of 	sd obtained from the
TDLSDA �filled circles� with the estimate 	S of Eq. �20�
�dotted line�. For comparison we also show the numerically
calculated surface plasmon frequencies 	sp �filled squares�,
which approach the classical value 	M for large N and dis-
play important oscillations for small N.24 We can see that the
predicted decrease of the spin-dipole frequency as N−1/3 is
essentially correct. However, Eq. �20� overestimates the ac-
tual frequencies. This discrepancy becomes increasingly im-
portant when the size a of the nanoparticle diminishes. Two
key assumptions in the derivation of Eq. �20� become less
justified when a gets smaller. On one hand, the spill-out ef-
fect due to the extension of the electron wave-functions be-
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yond the jellium sphere lowers the electron density as com-
pared to the bulk value3,4 �see Fig. 2, inset�. On the other
hand, assuming tilt �17� and not considering density gradi-
ents in the energy functional may become problematic.

A simple way to approximately include spill-out effects is
to use an electronic density which is slightly lower than n̄. In
the case of the surface plasmon, where the numerically ob-
tained frequency 	sp is lower than 	M, such an approach
leads to a reduced frequency 	̃M=	M

�1−Nout /N, where Nout
is the number of electrons outside the jellium sphere. How-
ever, 	sp is still lower than 	̃M, and moreover it exhibits a
nonmonotonous behavior not accounted for by 	̃M �see Fig.
2 and Ref. 24�. Assuming that the effect of spill-out on the
spin-dipole frequency is similar to the one on the surface
plasmon frequency, it is tempting to substitute 	M by 	sp in
Eq. �20�. As shown in Fig. 2, such an approach �circles�
considerably improves the estimation of 	sd.

B. Nonuniform ground-state density

A further improvement of the accuracy can be achieved
by going beyond the approximation of tilt �17� of the spin up
and down densities and, at the same time, taking into account
the spatial variations of the ground-state electron density.
The latter consideration is crucial since in the spill-out region
the density falls rapidly to zero �see inset of Fig. 2� such that
the kinetic energy contribution EK,G of Eq. �A2�, which in-
cludes the gradients of the electronic densities, becomes im-
portant.

In this section, we assume that the magnetization profile
of the surface paramagnon is given by the static magnetiza-
tion induced by a static external dipolar magnetic field. Ex-

pressing the energy functional of Eq. �A1� in terms of the
charge and magnetization densities, the ground-state condi-
tions for n0�r� and m0�r� are

��E�n,m�
�n�r�

� n=n0�r�

m=m0�r�

=��E�n,m�
�m�r�

� n=n0�r�

m=m0�r�

= 0. �21�

Applying an external magnetic field along the z axis,
Bex�r�=Bex�r�ẑ results �with g�B=1 in atomic units and the
negative charge of the electron� in an additional contribution
to the total energy functional

ET�n,m� = E�n,m� +� drBex�r�m�r� . �22�

If we work with a spherically symmetric nanoparticle, the
charge and spin channels are decoupled. Thus, in linear re-
sponse, the application of a magnetic field does not affect
n0�r�, and we drop this functional variable hereafter. The
magnetization density is driven from its ground-state value
m0�r�=0 to a perturbed value �m�r�, which is given by

��E�m�
�m�r�

�
m=�m�r�

= − Bex�r� . �23�

Once the applied field is removed, the nanoparticle is left
with an extra energy,

�E �
1

2
� dr� dr�� �2E�m�

�m�r��m�r��
�

m=m0

�m�r��m�r��

=
1

2
� drBin�r��m�r� . �24�

In the last equality we have used perturbed equilibrium con-
dition �23� and defined Bin=−Bex as an internal field that
counterbalances the applied one. Once the perturbation is
switched off, the dynamics of the magnetization is deter-
mined by the excess energy �E.

For the dipolar excitations that we are interested in �i.e.,
Eq. �12b�� an appropriate choice for the external field is
Bex=−z /�B, with 1 /�B measuring the strength of the pertur-
bation. With Eq. �15�, this allows us to write the extra energy
as

�E =
1

2�B
� drz�m�r� =

NZ↑

2�B
. �25�

Condition �23� and the form of Bex fix the induced magneti-
zation, which we can write as �m�r�=�mR�r�cos �. Defining
the quantity m̃�r�=�Br2�mR�r�, we show in Appendix B that
in the linear régime the magnetization profile is determined
by the differential equation

− D�r�m̃��r� + D�r��2

r
+ 36D�r�� + AKS�r��m̃�r� = n0�r�r3,

�26�

where

0.1

1
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ω
/ω
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0.5 1

1

n/
n-

r/a

FIG. 2. Size dependence of the surface paramagnon frequency,
together with the surface plasmon frequency 	sp �filled squares�.
Filled circles represent 	sd obtained from TDLSDA calculations.
The dotted line is the estimate 	S of Eq. �20�. The open circles
stand for the spill-out corrected Eq. �20�, where 	sp is used instead
of 	M in the prefactor. The pluses depict the semianalytical result of
Eq. �28� using the magnetization profile arising from Eq. �26�. In-
set: radial variation of the ground-state electron density used in Eq.
�26� and obtained from static LSDA calculations. The dashed, dot-
ted, and solid lines are for Na20, Na106, and Na306, respectively. n̄ is
the electron density for bulk Na and the dash-dotted step function
corresponds to the uniform ionic jellium.
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AKS�r� = � 1

12�2�1/3 1

rs�r���3�2

2
�2/3 1

rs�r�
− 1 + c�rs�r��� ,

�27a�

D�r� =
1

36

n0��r�
n0�r�

, �27b�

with n0�r� being the electron density in the ground state,
which can be calculated numerically from a static LSDA
code. The primes denote derivatives with respect to r.

As in the simpler case of a tiltlike magnetization, we as-
sume that the functional form of the magnetization profile is
conserved, up to an overall factor, in the oscillations occur-
ring when the external field is switched off. Such an assump-
tion is supported by the numerical results shown in Fig. 3.
The magnetization profile obtained at resonance �	=	sd,
filled circles, right scale� is much stronger but very close in
shape to the static one �	=0, Bex=−z /�B, empty circles, left
scale�. It is important to notice that the solution m̃�r� of Eq.
�26� �thin solid line� is a good representation of the local
spin-density calculations. The differences for small values of
r, which seem important on the scale of the figure, are not
significant because of the volume integrals that are per-
formed. We stress that in order to obtain the frequency
through Eq. �28� �below�, we have to integrate over rm̃�r�
�r3�mR�r� and not over the plotted quantity �mR�r� /r.

In addition, we see from Fig. 3 that the various approxi-
mations for the magnetization profile do not deviate consid-
erably from simple tilt �17� that we used in the previous
chapter. Even if the magnetization profile attains its maxi-
mum value around r=a, the spin dipole is not a surface mode
�in contrast to the surface plasmon� since the excitation is not
confined to the surface but appears in the whole nanoparticle.

The restoring force associated with �E �Eq. �25�� leads to
oscillations of the two spin populations with a frequency

	̂S =� 2�E

NZ↑2 =� 3

4�

N

� drrm̃�r�
. �28�

Using the profile m̃�r� from Eq. �26� we obtain a good ap-
proximation �pluses in Fig. 2� of the numerically obtained
	sd. This shows the importance of the spill out in determin-
ing the frequency of the spin-dipole excitations and under-
lines that the corresponding shift can be accurately estimated
from the equilibrium density profiles.25

IV. SPIN-DIPOLE SPECTRUM AND PARTICLE-HOLE
EXCITATIONS

In the preceding section, we have identified the behavior
of the lowest frequency peak in the spin-dipole absorption
spectrum. Two important questions deserve to be addressed
now. The first concerns the specificity of the lowest energy
peak as compared with the other ones. The second question,
already treated in the literature,8 partly in the context of elec-
tronic excitations in quantum dots,17 is whether or not the
spin dipole can be considered to be a collective excitation, as
it is the case for the surface plasmon.

In Fig. 1 we saw that in addition to its considerably larger
oscillator strength, the first peak is peculiar from the point of
view of the induced magnetization which has significant con-
tributions of constant sign, whereas there are always impor-
tant contributions of different sign for the other peaks. The
assumption of a tilt for the magnetization profile used in our
analytical approach of Sec. III A is appropriate to describe a
mode without nodes and thus allows for an estimate of the
frequency of the lowest peak. In the semianalytical model of
Sec. III B, the magnetization is supposed to be generated by
an external magnetic field that is linear in z. The radial com-
ponents of the magnetization profiles obtained numerically
are also positive except for a very small insignificant region
close to the center in the largest particles �see Fig. 3�. In
order to predict the frequencies of higher-energy peaks in the
spectrum, one would have to assume more complex magne-
tization profiles. However, those peaks show no obvious
regularities in their magnetization profile �e.g., the number of
nodes does not increase monotonically when moving to
higher frequencies�. One can conclude that the first peak re-
ally stands out as the only one with an essentially
everywhere-positive magnetization, a property that allowed
us to construct a rather precise theory for the frequency as-
sociated with this mode.

The authors of Ref. 8 concluded that the surface paramag-
non is a collective excitation, based on the observation that
the resonance exhausts more than 90% of the total spectral
weight. A widely accepted criterion is to consider an excita-
tion as collective if it results from the superposition of a
large number of low-energy particle-hole excitations with
comparable weight. This is certainly the case of the well-
studied surface plasmon,26,27 where the residual interaction
�understood in this context as going beyond the Hartree-Fock
approximation� results in a small perturbation of most of the
particle-hole excitations and the appearance of the collective
excitation in the high-energy sector of the spectrum. The
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FIG. 3. Radial part of the magnetization profile for various par-
ticle sizes. The filled circles represent the TDLSDA calculations
near the frequency of the surface paramagnon �right scale�. The
empty circles are the static results obtained from LSDA with an
external field Bex=−z /�B �left scale�. The solid line is the solution
of Eq. �26� based on a nonuniform ground-state electron density.
The normalization of the magnetization profile differs from that of
Fig. 1 by a factor �r /a�3 such that the tilted spin densities �Eq. �17��
result in a step function.
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considerably lower energy of the spin dipole and its size
scaling suggest some important differences in the nature of
the two excitations. In order to test this conjecture, we show
in Fig. 4 a comparison between the full spin-dipole absorp-
tion spectrum �solid lines� and the corresponding particle-
hole excitation spectrum �dashed�. The latter is obtained by
removing the electron-electron interaction in the calculation
of the linear response �setting �c=0 in Eq. �8��, although it is
still included when computing the ground state. Since there
is no Hartree contribution for the spin modes, the residual
interaction in this context is understood as effective
exchange-correlation term �8�. We can see that the two spec-
tra have a similar structure, with a one-to-one correspon-
dence between the excitations. The full spin-dipole absorp-
tion spectrum appears to be slightly redshifted as compared
to the particle-hole spectrum because of the attractive nature
of the exchange-correlation interaction.

The selection rules for dipole-created electron-hole exci-
tations dictate a minimal absorption energy,27 associated with
a frequency 	ph

min��� /2��9� /4�1/3N−1/3r̄s
−2, which has the

observed size scaling of 	sd. This estimation of the first peak
of the noninteracting absorption spectrum �dashed lines in
Fig. 4� agrees within 20% with the frequency that is obtained
from Eq. �20� by only keeping the one-body �kinetic energy�
component. Once we consider exchange and correlation cor-
rections, the previous excitation splits according to its total
spin. The spin selection rules tell us that the lower frequency
appears in the absorption spectrum �solid lines in Fig. 4�. The
corresponding shift can in principle be extracted within the
local density functional approximation provided the single-
particle wave functions are known.

In order to investigate in more detail the evolution of the
single-particle excitations into spin modes we vary �c in Eq.
�8� from the noninteracting particle-hole case �c=0 to full
spin-dipole excitation �c=1. Figure 5 shows the evolution of
the spin-dipole absorption spectrum with �c for Na34. One
can see that the structure of the spectrum is not modified by
the interaction strength. The lowest-frequency peak is always
the dominating one, and its strength is hardly changed. The
whole spectrum is redshifted by the interaction, which is
globally attractive in this case. The unchanged weights of the

peaks suggest that the particle-hole excitation, which is re-
sponsible for the lowest peak at �c=0 remains dominant
even when the interactions are switched on.

The behavior of the spin dipole can be contrasted with
that of the charge dipole �Fig. 6�. When �c=0, the four
particle-hole excitation modes previously obtained can be
observed at frequencies lower than 0.5	M�1.7 eV. By
gradually increasing �c, three of the modes are slightly blue-
shifted and become considerably weaker, while the fourth
one experiences a much larger blueshift and dominates the
other peaks for �c�0.2, eventually by several orders of
magnitude. For �c=1, this peak coincides with the surface
plasmon, which is a collective excitation with 	sp�2.8 eV
�0.8	M.

These findings are at odds with the claims of Serra et al.,8

who interpreted the surface paramagnon as a collective exci-
tation. In contrast, our results indicate that the various spin-
dipole modes appearing in the absorption spectrum should be
viewed as individual particle-hole excitations, slightly modi-
fied by the electron-electron interaction.

V. OPEN-SHELL SYSTEMS

For closed-shell systems, an electric dipole field only
couples to the charge dipole in the linear regime and the
excitation of the surface plasmon dominates the absorption
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FIG. 4. Spin-dipole absorption spectrum �solid line� and
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of laser light. One possibility to observe cross talking be-
tween the charge and dipole modes is to operate in the non-
linear regime with strong excitations.10 This may raise some
practical difficulties, such as electrons escaping the nanopar-
ticle, thus leaving behind a net positive charge. Another pos-
sibility is to work with open-shell systems that possess an
intrinsic magnetization in the ground state, so that the charge
and spin modes are coupled even in the linear regime.12,17

In Fig. 7, we show the dipole absorption spectrum Sn and
dipole-induced spin-dipole absorption spectrum Smn for a
Na27 nanoparticle.28 In both cases, the system is excited by
an oscillating electric field which induces both a charge-
dipole mode �solid curve� and a spin-dipole mode �dotted
curve�. The charge and magnetization profiles corresponding
to some of the observed peaks are plotted in Fig. 8.

The strongest coupling between the charge and spin chan-
nels occurs at the frequency of the surface plasmon. For
high-energy peaks, the charge-dipole response dominates its
spin-dipole counterpart, while the spin-dipole response is
more important in the low-energy spectrum. The peak la-
beled as �b� in Fig. 7 appears as a special case—with an
energy intermediate between that of the surface paramagnon
and surface plasmon modes—for which the spin-dipole re-

sponse is comparable to the charge-dipole response. The
same qualitative features have been observed in the spectra
of other open-shell systems.

In the sequel we focus on the maximum of the spin-dipole
response that occurs at the surface plasmon frequency for
systems with nonzero ground-state magnetization �peak �c�
in Fig. 7�. For weak excitations, the dynamical magnetization
can be written as

�m�r� = ���r�n0�r� + �n�r��0�r� �29�

in terms of the ground-state electron density n0�r�, the
ground-state polarization �0�r�, and their dynamical counter-
parts �n�r� and ���r�. As the laser light couples essentially
to the charge degrees of freedom, the excitation has the form
of a shift Z of the entire electron population. The dynamical
excitation density is thus concentrated at the surface and, in
the hard-wall homogeneous density approximation, given by
�n�r�= n̄Z��a−r�cos �, just like in the case of the surface
plasmon. The resulting charge excitation corresponds to a
peak at the surface plasmon frequency 	sp in the absorption
spectrum of Fig. 7.

In addition, even though the excitation does not act di-
rectly on the spin polarization �i.e., ���r�=0�, the dynamical
magnetization corresponding to the charge displacement
�m�r�=�n�r��0�r� does not vanish when �0�0. Assuming
that the polarization �0�r� is uniform inside the particle, and

equal to the mean spin polarization �̄= �N↑−N↓� /N �for the

example of Na27 �Ref. 28� one has �̄=7 /27�0.26�, we ob-
tain a response to the spin-independent excitation Vex,n in the
magnetization channel �m�r�, which is proportional to the
induced �n�r� in the charge channel, with proportionality

constant �̄. Therefore, we expect

Smn�	sp� = �̄Sn�	sp� . �30�

In Fig. 9 we present results of TDLSDA calculations with
spin-independent excitation for the mode with 	=	sp for a
variety of open-shell nanoparticles. The ratio between the
spin-dipole and charge-dipole absorption cross sections for
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not too large polarization is indeed to a very good approxi-

mation given by the mean ground-state polarization �̄. This
allows us to predict particularly strong cross talk between the
spin-dipole and the surface plasmon modes for open-shell
nanoparticles having large ground-state polarizations.

VI. CONCLUSION

In this work, we have studied the spin-dependent linear
response in alkali-metal �particularly sodium� nanoparticles.
Our primary aim was to achieve some insight into the nature
of these modes, which were first investigated by Serra et
al.8,9 Toward this goal we derived simple analytical and
semianalytical models that were confronted with linear re-
sponse TDLSDA calculations.

The spin-dipole absorption spectrum displays a number of
peaks at frequencies lower than the surface plasmon fre-
quency. The lowest of them is characterized by a magnetiza-
tion profile without nodes. An excess of spin-up electrons is
built in half of the nanoparticle at the expense of the spin-
down electrons, which are majority in the other half of the
nanoparticle. The restoring force of such a nonequilibrium
configuration results in the out-of-phase oscillation of the
two spin subsystems. The local spin-density approximation
can be used to estimate the restoring force, and within a
classical picture, we could estimate the lowest frequency.
This approach provides the correct scaling of the frequency
with the particle size �as N−1/3�, albeit blueshifted with re-
spect to the TDLSDA results. Such a deviation is partially
corrected by including the spill-out effect in a phenomeno-
logical way using the numerically obtained surface plasmon
frequencies instead of the Mie value. A more sophisticated
model, taking into account the inhomogeneities in the
ground-state density and gradient corrections, yielded an
even better agreement.

By comparing the spin-dipole absorption spectrum with
that obtained by progressively removing the electron-
electron interaction, we observed one-to-one correspondence
of the particle-hole excitations and the spin-dipole modes.
We thus showed that the spin-dipole modes are slight pertur-
bations of the particle-hole excitations and therefore do not
qualify as genuine collective excitations.

Finally, we studied the possibility of exciting the spin-
dipole modes by ordinary optical means �laser pulses�. For
open-shell systems, it is well-known that the spin and charge
modes are coupled in the linear regime.12,17 We showed that,
when exciting the system with a density shift, a spin-dipole
mode appears at the surface plasmon frequency, together
with the standard charge-dipole mode. The ratio between the
strengths of the absorption peak for the spin dipole and
charge dipole modes was shown to be given by the spin
polarization of the ground-state.

While our numerical calculations were done in the case of
Na nanoparticles, our general conclusions are also valid for
noble-metal nanoparticles and semiconductor quantum dots.
The latter systems are more adapted than alkaline nanopar-
ticles for experimental spectroscopic studies. Moreover, the
concepts developed for the study of spin modes in normal-
metal nanoparticles could be useful in analyzing ferromag-

netic nanoparticles, in view of the strong internal field exist-
ing in these materials.

ACKNOWLEDGMENTS

We thank M. Barranco for helpful correspondence and we
acknowledge financial support from the French National Re-
search Agency ANR �Project No. ANR-06-BLAN-0059�.

APPENDIX A: LSDA PARAMETRIZATION

Our numerical and analytical approaches to obtain the
spin-dipole resonances are based on the local spin density
approximation.16 For completeness we present in this appen-
dix the particular parametrization that we chose in our ap-
proaches. The energy functional of the electron system can
be written as

E�n↑,n↓� = EK�n↑,n↓� + EH�n� + EXC�n↑,n↓� , �A1�

where EK represents the kinetic energy, EH the Hartree con-
tribution, and EXC the exchange-correlation term. The kinetic
energy is given by

EK�n↑,n↓� = EK,TF�n↑,n↓� + EK,G�n↑,n↓� , �A2�

with the Thomas-Fermi component

EK,TF�n↑,n↓� =
3

10
�6�2�2/3� dr�n↑5/3�r� + n↓5/3�r��

�A3�

and the gradient correction

EK,G�n↑,n↓� =
1

72
� dr� 
�n↑
2

n↑ +

�n↓
2

n↓ � , �A4�

which takes into account the spatial density variations in the
electron gas.3,29 This term is particularly relevant when we
consider spill-out effects and thus a finite region where the
density exhibits large spatial variations �as in Sec. III B�.

The Hartree contribution depends only on the total density
n=n↑+n↓ and is given by the electrostatic potential energy

EH�n↑,n↓� =
1

2
� � drdr�

n�r�n�r��

r − r�


. �A5�

This term is irrelevant for spin-dipole excitations in spheri-
cally symmetric nanoparticles since they do not involve
charge displacements.

The exchange-correlation term can be expressed in terms
of the exchange and correlation components as EXC=EX
+EC with

EX/C�n↑,n↓� =� drn�r��x/c�n↑,n↓� . �A6�

The function �xc=�x+�c determines the exchange-correlation
potential through Eq. �5�. For the exchange part one has

�x�n↑,n↓� = −
3

2
� 3

4�
�1/3

�n↑4/3 + n↓4/3�/n . �A7�

For �c we use21
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�c�n↑,n↓� = �c
U�rs� + ��c

P�rs� − �c
U�rs��f��� �A8�

with

�c
U�rs� =

− 0.1423

1 + 1.0529�rs + 0.3334rs

, �A9�

�c
P�rs� =

− 0.0843

1 + 1.3981�rs + 0.2611rs

, �A10�

f��� =
�1 + ��4/3 + �1 − ��4/3 − 2

24/3 − 2
. �A11�

The normalized interparticle distance rs= �4�n /3�−1/3 and the
spin polarization �= �n↑−n↓� /n are both local properties of
the electron system. The above parametrization of EXC was
used in our analytical approaches, as well as in the numerics,
since it has been proven to provide a good representation for
the electron densities that we are interested in.

APPENDIX B: MAGNETIZATION PROFILE FOR
NONUNIFORM GROUND-STATE DENSITIES

In this appendix we develop perturbed equilibrium condi-
tion �23� for a closed-shell nanoparticle in an external mag-
netic field and derive differential equation �26� for the mag-
netization profile.

Expressing Eq. �23� in terms of the polarization we have

1

n0�r�
��E���

���r�
�

�=���r�
=

z

�B
. �B1�

Similarly as in Eq. �18�, we can write the functional deriva-
tives of EK,TF, EX, and EC, respectively, as

1

n0�r�
�EK,TF

���r�
=

�3�2�2/3

4
n0

2/3�r���1 + ��r��2/3 − �1 − ��r��2/3� ,

�B2a�

1

n0�r�
�EX

���r�
= −

1

2
� 3

�
�1/3

n0
1/3�r���1 + ��r��1/3 − �1 − ��r��1/3� ,

�B2b�

1

n0�r�
�EC

���r�
= ��c

P�rs�r�� − �c
U�rs�r���f����r�� , �B2c�

where f� stands for the derivative of the function f defined in
Eq. �A11�. Because of large density variations in the spill-out
region we consider gradient correction �A4� for which we get

1

n0�r�
�EK,G

���r�

=
1

72n0�r�
�

���r��� dr� 
�n0
2

n0�r�
+ n0�r�


���r�
2

1 − �2�r�
�� .

�B3�

The first term of the integrand is independent of ��r�, and the
second can be treated using partial integration yielding

1

n0�r�
�EK,G

���r�
=

1

36
 ��r�
���r�
2

�1 − �2�r��2 −
1

n0�r�
� �n0�r� � ��r�

1 − �2�r�
�� .

�B4�

Since �n0�r�=n0��r�r̂, we have ��n0�r����r��=n0��r�����r� /
�r�+n0�r��2��r�. Assuming that the polarization is small and
a smooth function of r verifying �2�����r� /�r we remain
in linear order in � and write

1

n0�r�
�EK,G

���r�
� −

1

36

n0��r�
n0�r�

���r�
�r

. �B5�

Gathering the various contributions to the energy, Eq. �B1�
becomes

−
1

36

n0��r�
n0�r�

����r�
�r

+ AKS��r� =
r

�B
cos � , �B6�

with AKS defined in Eq. �27a�. Since Eq. �B6� admits solu-
tions of the dipolar form, we write ���r�=��R�r�cos � and
m̃�r�=�Br2n�r���R�r�, obtaining Eq. �26� for the magnetiza-
tion profile. The function m̃�r� is more appropriate than
��R�r� for numerical calculations dealing with small electron
densities.
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